【Python CheckiO 题解】Largest Rectangle in a Histogram


CheckiO 是面向初学者和高级程序员的编码游戏,使用 Python 和 JavaScript 解决棘手的挑战和有趣的任务,从而提高你的编码技能,本博客主要记录自己用 Python 在闯关时的做题思路和实现代码,同时也学习学习其他大神写的代码。

CheckiO 官网:https://checkio.org/

我的 CheckiO 主页:https://py.checkio.org/user/TRHX/

CheckiO 题解系列专栏:https://itrhx.blog.csdn.net/category_9536424.html

CheckiO 所有题解源代码:https://github.com/TRHX/Python-CheckiO-Exercise


题目描述

【Largest Rectangle in a Histogram】:求直方图最大矩阵面积,给定一个列表,列表中的元素表示一个直方图中所有矩形的高度,计算在直方图内构建的最大矩形的面积。
在这里插入图片描述
【链接】https://py.checkio.org/mission/largest-histogram/

【输入】:直方图中所有矩形的高度列表

【输出】:最大矩形的面积

【前提】:0 < len(data) < 1000

【范例】

largest_histogram([5]) == 5
largest_histogram([5, 3]) == 6
largest_histogram([1, 1, 4, 1]) == 4
largest_histogram([1, 1, 3, 1]) == 4
largest_histogram([2, 1, 4, 5, 1, 3, 3]) == 8

代码实现

def largest_histogram(histogram):
    i = 0
    max_value = 0
    stack = []
    histogram.append(0)
    while i < len(histogram):
        if len(stack) == 0 or histogram[stack[-1]] <= histogram[i]:
            stack.append(i)
            i += 1
        else:
            now_idx = stack.pop()
            if len(stack) == 0:
                max_value = max(max_value,i * histogram[now_idx])
            else:                    
                max_value = max(max_value,(i- stack[-1] -1) * histogram[now_idx])
    return max_value


if __name__ == "__main__":
    #These "asserts" using only for self-checking and not necessary for auto-testing
    assert largest_histogram([5]) == 5, "one is always the biggest"
    assert largest_histogram([5, 3]) == 6, "two are smallest X 2"
    assert largest_histogram([1, 1, 4, 1]) == 4, "vertical"
    assert largest_histogram([1, 1, 3, 1]) == 4, "horizontal"
    assert largest_histogram([2, 1, 4, 5, 1, 3, 3]) == 8, "complex"
    print("Done! Go check it!")

大神解答

大神解答 NO.1

def largest_histogram(h):
    result = min(h) * len(h)
    for w in range(1, len(h)):
        for i in range(len(h) - w + 1):
            result = max(result, min(h[i:i + w]) * w)
    return result

大神解答 NO.2

def largest_histogram(h):
    n = len(h)
    return max((j - i) * min(h[i:j]) for i in range(n) for j in range(i+1, n+1))

大神解答 NO.3

def largest_histogram(histogram):
    return max(height * max(len(strip) for strip in ''.join('x' if x >= height else ' ' for x in histogram).split()) for height in set(histogram))

大神解答 NO.4

def mesure(hist):
    return min(hist) * len(hist)
    
def sub_histograms(hist):
    for start in range(len(hist)):
        for stop in range(start+1, len(hist)+1):
            yield hist[start:stop]

def largest_histogram(histogram):
    return max(map(mesure, sub_histograms(histogram)))
发布了145 篇原创文章 · 获赞 511 · 访问量 45万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览